Process and PAT

Kaiser offers one of the most comprehensive range of Raman products to help meet the needs of Process and PAT markets.

Kaiser has demonstrated a commitment to excellence in our products and service to our customers.  Our knowledge, gained through 19 years of 24/7 process experience working with our customers in the Process Analytical Chemistry (PAC) and Process Analytical Technology (PAT) markets, has lead to the current generation of optimized, self-checking, self-diagnosing process Raman equipment.  The combination of industry leading sampling flexibility and smart analyzers is found in the suite of RAMANRXN SYSTEMS™ process Raman analyzers.

Process knowledge and understanding is key to developing and keeping a process under control.  Maintaining a process within control limits allows an “in-spec” product to be manufactured each and every time.  Process understanding is not industry specific in today’s competitive marketplace. The value of an analytical tool can be measured in many ways including “how many problems it can solve,” or “what is the value of the associated savings.”  Scientifically and financially successful Raman applications have been demonstrated both at-line in the laboratory and on-line in manufacturing in PAC and PAT environments.  Contact Kaiser for a list of companies working with applications enabled by RAMANRXN SYSTEMS Raman analyzers.

Analyzers are available for process development in general purpose areas, moveable systems for plant trials, and certified enclosed analyzers for hazardous areas locations.

Have an application that requires further investigation? Complete our Application Feasibility form to determine if Raman is a suitable technique.

Further information on Process / PAT Raman applications can be found in Handbook of Raman Spectroscopy:  From Laboratory to Process Line by Ian R. Lewis and Howell G. M. Edwards, Marcel Dekker, New York, New York (2001)

Application Resources
Title Category Format ID#  
Comparing PhAT System™ and RamanRxn1™ Approaches for the Study of Wet Granulation Raman Application Notes PDF AN317
Following a Process-Induced Transformation During Granulation Using In Situ Techniques Raman Application Notes PDF AN316
Kinetics of a Catalytic Hydrogenation Reaction Raman Application Notes PDF AN300
Monitoring a Pharmaceutical Crystal Transformation In Situ Raman Application Notes PDF AN307
Monitoring CaCO3 Polymorph Formation in the Presence of Polymeric Additives Raman Application Notes PDF AN204
Monitoring Grignard Production in Real Time Raman Application Notes PDF AN302
Monitoring the Rutile/Anatase Ratio in TiO2 Production Raman Application Notes PDF AN202
Off-Line and On-Line Raman Spectroscopy of API-Containing Extruded Films Raman Application Notes PDF AN312
Optimizing a Microwave-Assisted Diels–Alder Reaction with Real-Time Analytics Raman Application Notes PDF AN314
Quantifying Anhydrate/Hydrate Using Potential PAT In Situ Techniques Raman Application Notes PDF AN315
Raman Spectroscopy to Support REACH Registration of Gases Raman Application Notes PDF AN208
Raman-Based Endpoint Detection of a Heterogeneous Etherification Reaction Raman Application Notes PDF AN329
Rapid Monitoring of Antisolvent Addition Crystallization and Dehydration Raman Application Notes PDF AN308
Real-Time Quality Prediction of Continuously Produced Pharmaceutical Granules Raman Application Notes PDF AN330
Tandem Raman and IR Spectroscopies for Monitoring of Soil Gases in CO2 Sequestration Raman Application Notes PDF AN209
The Formation of Phosphorus Trichloride from Phosphorus and Chlorine Raman Application Notes PDF AN200
The Production of Methyl Chlorosilanes Raman Application Notes PDF AN201
This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more here »